Quantum Cryptography and Network Applications

Professor Han-Chieh Chao (趙涵捷)
Professor, Department of Electronic Engineering and CSIE
President, National Ilan University, I-Lan, Taiwan
Zhangjiajie, China
November 14, 2013
Prof. Han-Chieh Chao

- Han-Chieh Chao
- TEL: +8863-9317000
- E-mail: hcc@niu.edu.tw
- PhD from Purdue University
- Current Position: President of National Ilan University (NIU), Taiwan
- Jointly Appointed Professor of Department of CSIE and Electronic Engineering, NIU.
- Jointly Appointed Professor of National Dong Hwa University, Hualen, Chinese Taipei
- Honorary Professorship of
 - Beijing Jiaotong University, Yantai University, Xiamen University, Lanzhou University and HIT at SZ
- FIET (Fellow of IET)
- FBCS CITP (Fellow and Chartered IT Professional of British Computer Society)
- Editor-in-Chief: IET Communications, IET Networks, IJAHUC, JIT, IJIPT
- Associate Editor: IEEE Network, IEEE Systems Journal, Mobile Information Systems, WCMC, IJCS, … etc.
(http://www.twgrid.org)
Outline

• Quantum Computing
• Basic Properties of Quantum Mechanics
• Quantum Cryptography
 • Quantum Key Distribution (QKD)
 • Quantum Secure Direct Communication (QSDC)
 • Quantum Secret Sharing (QSS)
• Applications for Network Security
 • Multiparty Secure Computation
 • Quantum Cryptography for Future E-Commerce
• Conclusion
Quantum Computing

• Extraordinary capabilities are expected:
 • factoring a 3,000 digit number 10^{40} faster than today
 • Today's best multi-core processors can encrypt or decrypt a 150-digit number
 • Decrypting a 1,000-digit number, it would take roughly all the computational resources in the world
 • "On a quantum computer [in theory], it might take a few hours"

Source: IBM (2012)
Quantum Computing

• In this year, Google Buys a Quantum Computer developed by D-Wave Systems.
• Google declined to comment, aside from the blog post.
 • “For most problems, it was 11,000 times faster, but in the more difficult 50 percent, it was 33,000 times faster. In the top 25 percent, it was 50,000 times faster.”

Source:
http://bits.blogs.nytimes.com/2013/05/16/google-buys-a-quantum-computer/?_r=0
Basic Properties of Quantum Mechanics
-Quantum bit (*qubit*)

- In the quantum world, each particle is spinning in its own direction.
- *qubits* that spin up represent the classical bit “0” (a), and conversely the qubits that spin down represent “1” (b).
- But notice that before we measure qubits, we cannot assure their directions.
 - *qubit* can be 0 and 1 at the same time
 - Superposition (real parallel computing)
Basic Properties of Quantum Mechanics - Quantum entanglement

- For two or more qubits their spinning directions are correlated to each other.
- There are two kinds of entanglement states
 - the same direction
 - opposite directions
- However far they are from each other, we can always correctly deduce one’s direction from the other.

(f) (g)
Quantum Cryptography

- Quantum Cryptography was invented in 1984 (29 years ago).
- Quantum Channel could not be
 - Tapped
 - Measured without disturbance
 - Faithfully copied

QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 USA)
Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

International Conference on Computers, Systems & Signal Processing Bangalore, India December 10-12, 1984
Quantum Key Distribution (QKD)

• A famous protocol for creating a one-time pad is BB84
• Alice and Bob want to share a random key before they communicate
• They must first define the spinning type
 • left and right, to represent “0” and “1”
 • spinning up and down as key 1, left and right as key 2
• BB84 cannot only create the shared key but also detect eavesdroppers.
 • In order to get the shared key Eva may steal the sequence and measure them.
 • But the error rate will be higher than the safe one.
Quantum Key Distribution (QKD)

<table>
<thead>
<tr>
<th>Qubit id</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key type (Alice)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Alice(bit)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Key type (Bob)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Alice

<table>
<thead>
<tr>
<th>Qubit id</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key type (Alice)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Alice(bit)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Key type (Bob)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Bob

<table>
<thead>
<tr>
<th>Qubit id</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key type (Alice)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Alice(bit)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Key type (Eva)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Eva

<table>
<thead>
<tr>
<th>Qubit id</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key type (Bob)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Bob

Measurement result

<table>
<thead>
<tr>
<th>Qubit id</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key type (Alice)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Alice(bit)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Key type (Bob)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Bob

Measurement result with Eva

<table>
<thead>
<tr>
<th>Qubit id</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key type (Alice)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Alice(bit)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Key type (Eva)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Key type (Bob)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Bob
Quantum Key Distribution (QKD)

- **UQCC 2010 Tokyo QKD Network:**
 - an eavesdropping attempt on the network and its detection,
 - demonstration of uncrackable one-time pad encryption of a live audio or video stream over a distance of 45 km with a line loss of some 13 dB

Source: http://www.uqcc2010.org/highlights/index.html
Long distance QKD (World records)

- 150 km of installed fibers
 - Optics Express 17, 13326 (2009)

250 km (lab)
NJP 11, 075003 (2009)
Quantum Secure Direct Communication (QSDC)

- QSDC combines the BB84 concept with direct communications.
- These qubits contain test qubits (darker ones) and message qubits (lighter ones).
- Measures the test qubits for eavesdropper detection.
Our Contributions (QSDC)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Gao2005</th>
<th>Dong2011</th>
<th>Man2006</th>
<th>Dong2008</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol type</td>
<td>CQSDC</td>
<td>CQSDC</td>
<td>CBQSDC</td>
<td>CBQSDC</td>
<td>CBQSDC</td>
</tr>
<tr>
<td>Resource cost of two directional transmission</td>
<td>6Q&6C</td>
<td>6Q&6C</td>
<td>6Q&6C</td>
<td>6Q&6C</td>
<td>5Q&6C</td>
</tr>
<tr>
<td>Secret message type</td>
<td>C/Q</td>
<td>C/Q</td>
<td>C</td>
<td>C</td>
<td>C/Q</td>
</tr>
<tr>
<td>Received classical bits</td>
<td>1C</td>
<td>1C</td>
<td>2C</td>
<td>2C</td>
<td>1C</td>
</tr>
<tr>
<td>Received quantum bits</td>
<td>1Q</td>
<td>1Q</td>
<td>0</td>
<td>0</td>
<td>1Q</td>
</tr>
<tr>
<td>Controller</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Classical message exchange</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quantum information exchange</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No transmission</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Honest condition between legitimate users</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Quantum Secret Sharing (QSS)

• A sender divides a secret message into n components and sends them to n agents.
• It means that the n agents will have to cooperate with each other to decode the secret message.
• Step 1: Alice prepares three pairs of two entangled qubits, ordered by (1, 2), (3, 4) and (5, 6). She then sends one qubit of each pair to each receiver.
Quantum Secret Sharing (QSS)

- Step 2: Alice measures all of the qubits that she holds.
- The three qubits that Alice holds are now entangled with each other. The other qubits are also mutually entangled.
- This interesting feature of quantum mechanics is called entanglement swapping.
Quantum Secret Sharing (QSS)

• Step 3: After the entanglement swapping process Alice encodes her secret message by performing one of four operations on each qubit.
• Step 4: Bob, Charlie and David cooperate to decode Alice’ message using the qubits they have and the classical bits that Alice published.
Our Contributions (QSS)

 - Not only using less qubits but also carrying more information
 - Does not have to pre-share the code table

<table>
<thead>
<tr>
<th>Schemes</th>
<th>Cost of qubits</th>
<th>Cost of bits</th>
<th>Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deng et al. [10]</td>
<td>$(A + 1) \times \frac{C}{4}$</td>
<td>0</td>
<td>$\frac{C}{4}$</td>
</tr>
<tr>
<td>Sun et al. [11]</td>
<td>$2(A + 1) \times \frac{C}{4}$</td>
<td>0</td>
<td>$\frac{C}{4}$</td>
</tr>
<tr>
<td>Chou et al. [22]</td>
<td>$2(A + 1) \times \frac{C}{4}$</td>
<td>$\frac{C}{2}$</td>
<td>$\frac{C}{4}$</td>
</tr>
<tr>
<td>Our schemes</td>
<td>$2(A + 1) \times \frac{C}{6}$</td>
<td>$\frac{C}{3}$</td>
<td>$\frac{C}{2A}$</td>
</tr>
</tbody>
</table>

1. A: The total number of agents.
2. C: The classical bits of secret messages.
Multiparty Secure Computation

- Secure computation involves obtaining the final decryption result without exposing the required details.
- There is a related secure computation problem called the “dating problem”.
- We simply think of the quantum machine as a black box. Imagined a black box exists between Alice and Bob.
- Inside the box are four entangled *qubits*. Alice and Bob each have two *qubits* in their possession.
Multiparty Secure Computation

- Alice and Bob first measure one of their qubits.
- If the outcome is in accord with their intention, the process continues, or otherwise they restart the process.
Multiparty Secure Computation

- If the process goes on, they measure the remaining qubits and publish their second outcome.
- They can now obtain the final result by computing the published outcomes.
- This secure computation concept can also be used for cloud computing.
- Moreover, the cloud data center knows nothing about the encoded data because any measurement cannot avoid disturbing the *qubit* states.
Quantum Cryptography for Future E-Commerce

- The E-Commerce application uses the QKD and QSDC concepts.
- Suppose Alice and Bob are a customer and seller, respectively, and they have a deal through an online shopping mall.
- There are some constraints as follows.
 - First, the business platform is provided by an online shopping mall.
 - Second, the process the customers use to find and buy goods must be through the online shopping mall.
 - Third, sellers provide their services through the online shopping mall.
Quantum Cryptography for Future E-Commerce

- The protocol is composed of three steps
- Step 1: The online shop first prepares a sequence of qubits in entanglement to provide service for Alice and Bob.
Quantum Cryptography for Future E-Commerce

• Step2: It then sends these sequences to them.
• Alice and Bob next encode their messages by performing quantum operations and send the encoded *qubits* back to the online shop.
Quantum Cryptography for Future E-Commerce

- Step 3: The online shop then performs measurements on each entangled *qubits* pair and publishes the measurement outcomes.
- Alice and Bob now have accomplished their deal.
- By comparing the original entangled qubits prepared by the online shop and the measurement outcomes, they can know decipher messages from each other.
Our Contributions (Secure Computation)

- We proposed the Distributed Quantum Entanglement Sharing (DQES) model to share quantum entanglement with processors
- Some possible applications such like
 - Database consistency,
 - Job scheduling,
 - System dependability, and
 - Reliable communication protocols
Our Contributions (furthermore...)

Experimental results of the 0-1 knapsack problem

<table>
<thead>
<tr>
<th>Number of</th>
<th>Profit</th>
<th>GA</th>
<th>TS</th>
<th>QEA</th>
<th>QTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>580.98</td>
<td>606.20</td>
<td>617.35</td>
<td>619.66</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>577.43</td>
<td>603.44</td>
<td>604.19</td>
<td>613.45</td>
</tr>
<tr>
<td></td>
<td>0.6407</td>
<td>0.5256</td>
<td>0.5821</td>
<td>0.4429</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>25</td>
<td>1400.97</td>
<td>1494.03</td>
<td>1532.33</td>
<td>1546.55</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1394.19</td>
<td>1485.69</td>
<td>1476.07</td>
<td>1514.88</td>
</tr>
<tr>
<td></td>
<td>1336.31</td>
<td>1324.33</td>
<td>1336.21</td>
<td>1338.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7449</td>
<td>0.5353</td>
<td>0.9266</td>
<td>0.6739</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td>2766.55</td>
<td>2981.94</td>
<td>3030.37</td>
<td>3098.40</td>
</tr>
<tr>
<td></td>
<td>2754.88</td>
<td>2960.74</td>
<td>2906.63</td>
<td>3003.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2666.85</td>
<td>2635.97</td>
<td>2667.34</td>
<td>2673.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9712</td>
<td>0.5654</td>
<td>1.5083</td>
<td>1.0064</td>
<td></td>
</tr>
</tbody>
</table>
出處: 雜誌《小學二年生》1979年1月號
Conclusion

• When integrated circuits become smaller down to the nano level, quantum mechanics characteristics are revealed presenting greater computing performance possibilities.

• Quantum cryptography can be used in secret sharing, secure computation and secure direct communications as well.

• The future research ...
 • Quantum networks
 • DWDM, Satellite, Quantum Internet ...
 • Classical protocols based on quantum primitives
References

Thanks for your attention.

Q&A