Identifying Propagation Sources and Modeling Propagation Dynamics in Networks*

Professor Wanlei Zhou
Alfred Deakin Professor
Chair of Information Technology
Deakin University
wanlei@deakin.edu.au
www.deakin.edu.au/~wanlei

* Work is carried out by many colleagues in my group: Prof Wanlei Zhou, Prof Yang Xiang, Dr Shui Yu, Dr Robin Doss, Dr Jun Zhang, Dr Silvio Cesare, Dr Sheng Wen, Dr Yini Wang, Ms Jiaojiao Jiang, Mr Chao Chen, etc.
Outline

- Introduction
- Source Identification Methods
- Comparative Studies
- Our Work in Modelling the Propagation of Worms and Rumours
- Future Work & Discussion
Key Publications

This presentation is based on following publications by my research group:

Introduction

• **Background:**
 • We live in a world of networks, e.g., social networks, computer networks, transportation networks, biological networks, etc.
 • Any complex system can be modeled as a network, where nodes are the elements of the system and edges represent the interactions between them.
 • The ubiquity of networks has made us vulnerable to various network risks.
Introduction

- A contagious disease can spread quickly through a population and lead to an epidemic.
 - For example, the World Health Organization declared that the H1N1 virus spread worldwide and had caused about 17,000 deaths by the start of 2010.
Introduction

- A computer virus on a few servers of a computer network can quickly spread to millions of computers in the computer networks.
- For example, CryptoLocker, a Trojan Horse ransomware, first discovered in September 2013, had extorted a total of around $3 million from victims.
Introduction

• A *Social spam* started by a few individuals can spread quickly through the underlying social network.

TECH

The Lure Of Naked Hollywood Star Photos Sent The Internet Into Meltdown In New Zealand

CHRIS PASH | SEP 7 2014, 4:21 PM | BOOKMARK | 26
Introduction

• **Significances of identifying propagation sources and modeling propagation dynamics in networks:**
 - Identifying propagation sources as quickly as possible can help people find the *causation of risks*, and therefore, *diminish the damages*.
 - Propagation dynamics modeling can help building better *defense strategies*.
 - It is important to accurately identify the ‘culprit’ of the propagation for *forensic purposes*.

• **Question:**
 - How can we *identify propagation sources* in a type of complex networks?
Outline

- Introduction
- Source Identification Methods
- Comparative Studies
- Our Work in Modelling the Propagation of Worms and Rumours
- Future Work & Discussion
Source Identification Methods

• Three categories of network observations:
 • (i) Complete Observation: The exact state of each node is observed in a network.
 • Suitable for small-scale networks.
Source Identification Methods

• (ii) **Snapshot**: A *portion* of nodes are observed in a network. It only provides *partial* knowledge of a network status.
 • Much more *usual* in the real world.
Source Identification Methods

- (iii) **Sensor Observation**: Sensors record the propagation dynamics over them.
 - Sensors need be *chosen* very carefully.
Source Identification Methods

• Epidemic Models

 - SI model: In this model, nodes are initially susceptible and can be infected along with the propagation of risks. Once a node is infected, it remains infected forever. This model focuses on the infection process $S \rightarrow I$, regardless of the recovery process.

 - SIR model: Recovery processes are considered in this model. Similarly, nodes are initially susceptible and can be infected along with the propagation. Infected nodes can then be recovered, and never become susceptible again. This model deals with the infection and curing process $S \rightarrow I \rightarrow R$.

 - SIS model: In this model, infected nodes can become susceptible again after they are cured. This model stands for the infection and recovery process $S \rightarrow I \rightarrow S$.

Source Identification Methods

- Current methods of source identification can be categorized into three main categories based on different types of network observations.

Taxonomy of current source identification methods:
Source Identification Methods

• **Rumor-Center Method (Complete Observation)**
 • It aims to find a node which is located at the **center** of the infection graph.
 • In a tree-like network, the **rumor center** is proved to be equivalent to the **distance center**, i.e., the node have the **minimum sum of distances** to all the other infected nodes.
Source Identification Methods

• Single Rumor Center:
 • It assumes that information spreads in tree-like networks and the information propagation follows SI model. Assuming an infected node as the source, its rumor centrality is defined as the number of distinct propagation paths originating from the source. The node with the maximum rumor centrality is called the rumor center.

• Local Rumor Center:
 • Same assumption as before, this method designates a set of nodes as suspicious sources so it reduces the scale of seeking origins. The local rumor center is defined as the node with the highest rumor centrality compared to other suspicious infected nodes. The local rumor center is considered as the source node.

• Multiple Rumor Centers:
 • In addition to the basic assumptions, researchers further assume the maximum number of sources is known for the method of identifying multiple rumor centers. The rumor centrality is extended for a set of nodes, which is defined as the number of distinct propagation paths originating from the set.
Source Identification Methods

• **Eigenvector-based Methods (Complete Observation)**
 - Dynamic age: Fioriti et al. claim that the ‘oldest’ nodes which are associated to those with largest eigenvalues of the adjacency matrix, A, are the propagation sources.
 - The minimum description length (MDL) method: Similarly, Prakash et al. claim that the nodes with the largest score in the minimum eigenvector of the Laplacian matrix, $L = D - A$, refer to the propagation sources.
 - Both methods are considered on generic networks. They assume propagation follows SI model.
Source Identification Methods

• **Jordan-Center Method (Snapshot)**
 - It assumes that information propagates in tree-like networks and the propagation follows SIR, SI or SIS models.
 - It also aims to find a node which located at the center of the infection graph.
 - It uses a sample path based approach to identify the propagation source. An optimal sample path is the one which most likely leads to the observed snapshot of a network. The source associated with the optimal sample path is proven to be the Jordan center of the infection graph.
 - *Jordan centers* have been proved to be the graph centers that have the minimum distance to the farthest infected nodes. So Jordan center is considered as a propagation origin.
Source Identification Methods

• Dynamic Message Passing (*Snapshot*)
 • The DMP method is based on a set of the dynamic equations and follows SIR model in generic networks. Assuming an arbitrary node as the source node, it first estimates the probabilities of other nodes to be in different states at time t. Then, it multiplies the probabilities of the observed set of nodes being in the observed states. The source node which can obtain the maximum product is considered the propagation origin.
 • The dynamic equations are based on *maximum likelihood* techniques and *discrete* propagation model.
 • It aims to find a node from which we can obtain the observed snapshot with the *highest probability*.
Source Identification Methods

• **Effective Distance Based Method (Snapshot)**
 - This method assumes that propagation follow SI model in weighted networks. It first proposes the effective distance concept to represent the propagation process. According to the propagation process of wavefronts, the spreading concentricity can only be observed from the perspective of the true source. Then, the node, which has the minimum standard deviation and mean of effective distances to the nodes in the observed wavefront, is considered as the source node.
 - The *complex spatiotemporal propagation* can be reduced to simple, homogeneous *wavefront patterns* by using effective distance.
 - According to the propagation process of *wavefronts*, the *spreading concentricity* can only be observed from the perspective of the *source*.

Wavefront propagation patterns
Source Identification Methods

• **Gaussian Method** *(Sensor Observation)*
 - Every edge has a *deterministic delay*, and each sensor has an *observed delay*.
 - It reduces the scale of seeking origins through a uniquely determined subtree from the direction in which information arrived at the sensors, and is guaranteed to contain the propagation origin. Then it uses the Gaussian technique to seek the source in the subtree: It calculates the ‘observed delay’ between a sensor and the other sensors and then calculates the ‘deterministic delay’ for every sensor node relative to a sensor node.
 - The node, which can *minimize* the differences between the ‘observed delays’ and the ‘deterministic delays’ of sensor nodes, is considered as the propagation source.

• **Monte-Carlo Method**
 - The Gaussian method is extended to the *Monte-Carlo* method from *tree-like* networks to *generic networks*.
Outline

- Introduction
- Source Identification Methods
- Comparative Studies
- Our Work in Modelling the Propagation of Worms and Rumours
- Future Work & Discussion
Comparative Studies

- **Crosswise comparison**
 - We conducted experiments on (1) synthetic networks: a regular tree and a small-world network; and (2) two real-world networks.
 - Comparison from *seven features*.
 - Most of current methods are based on *tree* networks.
 - Most of them can only be used to identify *single* source.
 - Most of them are very *computationally complex*.

<table>
<thead>
<tr>
<th></th>
<th>Topology</th>
<th>Observation</th>
<th>Model</th>
<th>Number of Sources</th>
<th>Infection Probability</th>
<th>Time Delay</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single rumor center</td>
<td>Tree</td>
<td>Complete</td>
<td>SI</td>
<td>Single</td>
<td>HM/HT</td>
<td>Constant</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Local rumor center</td>
<td>Tree</td>
<td>Complete</td>
<td>SI</td>
<td>Single</td>
<td>HM</td>
<td>Constant</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Multi rumor centers</td>
<td>Tree</td>
<td>Complete</td>
<td>SI</td>
<td>Multiple</td>
<td>HM</td>
<td>Constant</td>
<td>$O(N^3)$</td>
</tr>
<tr>
<td>Eigenvector center</td>
<td>Generic</td>
<td>Complete</td>
<td>SI</td>
<td>Multiple</td>
<td>HM</td>
<td>Constant</td>
<td>$O(N^3)$</td>
</tr>
<tr>
<td>Jordan center</td>
<td>Tree</td>
<td>Snapshot</td>
<td>SI(S/S)</td>
<td>Single</td>
<td>HM/HT</td>
<td>Constant</td>
<td>$O(N^3)$</td>
</tr>
<tr>
<td>DMP</td>
<td>Generic</td>
<td>Snapshot</td>
<td>SIR</td>
<td>Single</td>
<td>HT</td>
<td>Constant</td>
<td>$O(t_0N^2d)$</td>
</tr>
<tr>
<td>Effective distance</td>
<td>Generic</td>
<td>Snapshot</td>
<td>SI</td>
<td>Single</td>
<td>HT</td>
<td>Constant</td>
<td>$O(N^3)$</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Tree</td>
<td>Sensor</td>
<td>SI</td>
<td>Single</td>
<td>HT</td>
<td>Variable</td>
<td>$O(N^3)$</td>
</tr>
<tr>
<td>Monte Carlo</td>
<td>Generic</td>
<td>Sensor</td>
<td>SIR</td>
<td>Single</td>
<td>HT</td>
<td>Variable</td>
<td>$O(N\log N/e^2)$</td>
</tr>
<tr>
<td>Four-metrics</td>
<td>Generic</td>
<td>Sensor</td>
<td>SI</td>
<td>Single</td>
<td>HT</td>
<td>Variable</td>
<td>$O(N^3)$</td>
</tr>
</tbody>
</table>

Infection Probability: HM stands for homogeneous; HT stands for heterogeneous.
Comparative Studies

- Crosswise comparison of *typical methods* in two *real networks*
 - The first one is an Enron email network. This network has 143 nodes and 1,246 edges. On average, each node has 8.71 edges. Therefore, the Enron email network is a dense network.
 - The second is a power grid network. This network has 4,941 nodes and 6,594 edges. On average, each node has 1.33 edges. Therefore, the power grid network is a sparse network.
 - Sample topologies of these two real-world networks are shown here
Comparative Studies

- We randomly choose a node as a source to initiate a propagation, and then average the error distance between the estimated sources and the true sources by 100 runs to estimate the accuracy of source identification.

- Evaluated by **error distance**: the number of **hops** between the real sources and the estimated sources.

- The performances vary in different networks. Therefore, we are inspired to investigate the **factors** which may impact source identification methods.
Comparative Studies

- Factors that may impact source identification methods
 - (i) Network Topologies
 - Regular tree and Random tree.
Comparative Studies

(i) **Network Topologies (cont’d)**
- Regular networks and Small-world networks

Conclusion: Current methods are **sensitive** to network topologies.

Source identification methods applied on a 4-regular graph

Source identification methods applied on a small-world network
Comparative Studies

(ii) Propagation Schemes

- Random walk: A node can deliver a message randomly to one of its neighbors
- Contact-process (unicast): A node can deliver a message to a group of its neighbors that have expressed interest in receiving the message
- Snowball propagation schemes (broadcast): A node can deliver a message to all of its neighbors

Illustration of different propagation schemes. The black node stands for the source. The numbers indicate the hierarchical sequence of nodes getting infected.
Comparative Studies

• (ii) *Propagation Schemes (tested on both 4-regular tree and small-world network)*

Conclusion: Current methods are *sensitive* to different propagation schemes.
Comparative Studies

• (iii) Infection Probabilities ($q = 0.5$ and $q = 0.95$)

Conclusion: Current methods are not very sensitive to infection probabilities.
Outline

► Introduction
► Source Identification Methods
► Comparative Studies
► Our Work in Modelling the Propagation of Worms and Rumours
► Future Work & Discussion
Outline

- Introduction
- Source Identification Methods
- Comparative Studies
- Our Work in Modelling the Propagation of Worms and Rumours
- Future Work & Discussion
Our Work in Modelling the Propagation of Worms and Rumours

• Modelling the Propagation of Scanning Worms
• Modelling the Propagation of Online Social Network Worms
• Modelling the Propagation of Rumours and Truths in Online Social Networks
• Defense Measures in Online Social Networks
Modelling the Propagation of Scanning Worms

The Microcosmic Model

Our model has several important components:

- Propagation Matrix (PM)
- Propagation Source Vector (S)
- Vulnerable Distribution Vector (V)
- Patching Strategy Vector (Q)
- Propagation Ability (PA)

The major contributions are as follows:

> We create a microcosmic landscape on scanning worm propagation and successfully provide useful information for the proposed problems of where, when and how many nodes do we need to patch.

> Associated with S,V,Q, our model can also help us to evaluate:
 > The mutual effect of initial infectious states and patch strategies.
 > The impact of different distributions of vulnerable hosts.

> We introduce a complex matrix to represent the probabilities and time delay. This extension matches the real case well.
Mathematical Presentation

Propagation Matrix (PM):
We use an n by n square complex matrix PM with elements c_{xy} to describe a network consisting of n peers.

$$PM = \begin{bmatrix} c_{11} & \cdots & \cdots \\ \cdots & c_{xy} & \cdots \\ \cdots & \cdots & c_{nn} \end{bmatrix}_{n \times n},$$

$c_{xy} = p_{xy} + d_{xy}i$, $c_{xy} = 0 (x = y)$,

$\text{Re}(c_{xy}) = p_{xy} = p(N_y|N_x)$, $p_{xy} \in [0, 1]$,

$\text{Im}(c_{xy}) = d_{xy} = t(N_x, N_y)$, $d_{xy} \in (0, 1]$.

> Propagation Probability (p_{xy})

> Propagation Delay (d_{xy})

> Maximum time cost of scanning the entire IP address space or the hit-list
Mathematical Presentation

Propagation Function (γ):
Worm propagation from node x (N_x) to node y (N_y) is via and only via k intermediate nodes in a network consisting of n peers.

So that after k steps:

$$\gamma^0(\text{PM}) = \text{PM},$$
$$\gamma^k(\text{PM}) = \underbrace{\text{PM} \times \text{PM} \times \cdots \times \text{PM}}_{k+1}.$$

For each $c_{xy}^{(k)}$:

$$c_{xy}^{(k)} = \sum_{m=1}^{m=n,m \neq x} \sum_{m=n,m \neq x} (p_{xm}^{(k-1)} p_{my} - \beta t_{xm}^{(k-1)} t_{my} + (p_{xm}^{(k-1)} t_{my} + t_{xm}^{(k-1)} p_{my})i),$$

$k \in [1, n - 2]$, $x = 1, \ldots, n$, $y = 1, \ldots, n$.

> Impact Factor (β): describe the decrease in the propagation probability caused by time delay.
Key Factors: infectious state, vulnerability distribution and patch strategy

Propagation Source Vector (S):
An infectious peer that can propagate worms is represented with a probability of one. The probability of zero means that a peer is healthy and does not have the ability to propagate the worm.

$$S = [s_1, s_2, \ldots, s_x, \ldots, s_n]^T, s_x = 0 \text{ or } 1, x = 1, \ldots, n.$$

Then the iteration procedure can be represented as function γ_s:

$$\gamma_s^0 (PM) = S \&_L PM,$$
$$\gamma_s^k (PM) = \gamma_s^{k-1} (PM) \times PM = (S \&_L PM) \times PM \times \cdots \times PM (k \geq 1).$$

Wherein:

$$A \&_L B = \begin{bmatrix} a_1 & \cdots & b_11 \\ \vdots & \ddots & \vdots \\ a_n & \cdots & b_{nn} \end{bmatrix} \&_L \begin{bmatrix} b_{11} & \cdots & \cdots \\ \vdots & \ddots & \vdots \\ b_{xy} & \cdots & b_{nn} \end{bmatrix} = \begin{bmatrix} a_1 \times b_{11} & \cdots & a_1 \times b_{1n} \\ \vdots & \ddots & \vdots \\ a_n \times b_{xy} & \cdots & a_n \times b_{nn} \end{bmatrix}.$$

During the propagation process, each intermediate node can be infected and become infectious, so we introduce an infected state vector I:

$$i e_x = \sum_y S_y p_{yx}^{(k)} + \frac{\sum_y S_y p_{yx}^{(k)} t_{yx}^{(k)}}{\sum_y S_y p_{yx}^{(k)}} i. \quad i.e_x = 0 \text{ or } 1, \quad x = 1, \ldots, n,$$

$$I = [i e_1, i e_2, \ldots, i e_x, \ldots, i e_n]^T,$$

$$I_s^{(k)} = \Gamma (S^T, PM_s^{(k)}) \quad (k \geq 0),$$

defined as--
Key Factors

Vulnerable Distribution Vector \((V)\):
For an element in \(V\), the value of one represents that a peer is vulnerable. Zero means that the peer is healthy and is not vulnerable.
\[
V = [v_1, v_2, \ldots, v_x, \ldots, v_n]^T, \quad v_x = 0 \text{ or } 1, \quad x = 1, \ldots, n.
\]
Then the iteration procedure can be represented as function \(\gamma_{sv}\):
\[
\gamma_{sv}^0(PM) = S \&_L PM \&_R V^T,
\]
\[
\gamma_{sv}^{k+1}(PM) = \gamma_{sv}^{k-1}(PM) \times (V \&_L PM \&_R V^T) \quad (k \geq 1).
\]
Wherein:
\[
B\&_RA = \begin{bmatrix}
b_{11} & \cdots & \cdots & b_{xy} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
b_{ny} & \cdots & \cdots & b_{nn} & \cdots \\
\end{bmatrix} \&_R \begin{bmatrix}
a_1 & \cdots & \cdots & a_n \\
\end{bmatrix}
\]
\[
= \begin{bmatrix}
b_{11} \times a_1 & \cdots & \cdots & b_{1n} \times a_n \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
b_{n1} \times a_1 & \cdots & \cdots & b_{nn} \times a_n \\
\end{bmatrix}.
\]

The PM and infected probability vector \(I\) can be represented by:
\[
PM_{sv}^{(k)} = \gamma_{sv}^k(PM) \quad (k \geq 0),
\]
\[
I_{sv}^{(k)} = \Gamma(S^T, PM_{sv}^{(k)}) \quad (k \geq 0).
\]
Key Factors

Patch strategy vector (Q):

For an element in Q, the value of one represents that a peer has been patched and becomes a healthy node. Zero means that a peer is still vulnerable.

$$Q = [q_1, q_2, \ldots, q_x, \ldots, q_n]^T, q_x = 0 \text{ or } 1, \quad x = 1, \ldots, n.$$

Then the iteration procedure can be represented as function γ_{SVQ}:

$$Q' = V \& Q,$$

$$\gamma_{SVQ}^0(\text{PM}) = S \&_L \text{PM} \&_R Q'^T,$$

$$\gamma_{SVQ}^k(\text{PM}) = \gamma_{SVQ}^{k-1}(\text{PM}) \times (Q' \&_L \text{PM} \&_R Q'^T) \quad (k \geq 1).$$

The PM and infected probability vector I can be represented by:

$$\text{PM}_{SVQ}^{(k)} = \gamma_{SVQ}^k(\text{PM}) \quad (k \geq 0),$$

$$I_{SVQ}^{(k)} = \Gamma(S^T, \text{PM}_{SVQ}^{(k)}) \quad (k \geq 0).$$
The Contributions

We tested our model using a typical local preference worm: Code Red II and implemented a series of experiments to evaluate the effects of each major component in our microcosmic model.

Through the microcosmic model we are able to understand the detailed propagation process of scanning worms at the node-to-node level so as to enable us to develop effective countermeasures.

Based on the results drawn from the experiments, for high-risk vulnerabilities, it is critical that networks reduce the number of vulnerable nodes to below 80%. We believe our microcosmic model can benefit the security industry by allowing them to save significant money in the deployment of their security patching schemes.
Modelling the Propagation of Online Social Network Worms

What cause Epidemics in OSN?

- People share **news, interests and ideas** in OSNs,
- **but** these platforms also spread **email malware, rumors and malicious links**.
How Viruses Spread in OSNs?

Fig. 1: Recipient user j’s behavior for different types of malware emails. User i reads two of three malware emails at t_8 and another two malware emails at t_{16}, and then restarts at t_{20}. Case 1: nonreinfection; Case 2: reinfection in the work [3]; Case 3: reinfection of modern email malware; Case 4: both self-start mechanism in modern email malware. We assume a user will visit the malicious hyperlink or attachment if the user reads emails in this figure.
Important Features of OSN Worm

- **Feature 1**: The propagation of social network worms is triggered by user clicking or reading malicious hyperlinks or messages. *Users have different patterns to visit these malicious things.* So in the previous k-hops modeling where the worms spread from the origins to their neighbors, and then to the neighbors' neighbors in a hop-by-hop pattern. This may cause a problem.
 Solution: different patterns of users in the modelling (temporal dynamics).

- **Feature 2**: Social network worms, such as email worms, search new targets in the contact lists of compromised computers. This means *social network worms can only spread to topological neighbors in social networks.*
 Solution: consider topological neighbors in the modelling (spatial dependence).

- **Feature 3**: Users can be infected and send out worms copies again even though they have been infected before. Furthermore, *infected users can send out worm copies when compromised computers restart or certain events are triggered.*
 Solution: Implementing reinfection and self-start.
The susceptible-infectious-immunized (SII) model
Comparison of SIS, SIR, and SII models

- The difference among these models is caused by different considerations on the state transition of nodes.
- SIS models assume infected nodes become susceptible again after recovery.
- If infected nodes cannot become susceptible again once they are cured, the models are called SIR models.
- Considering the propagation of modern email malware, after users clean their infected computers or become more vigilant against a type of malware, they are unlikely to be infected any more. Therefore, SIS models are not appropriate to model the propagation of modern email malware.
- SIR models may suit for modern email malware, but the real case is that a susceptible user can be immunized directly without being infected at first.
- Thus, the state transition of our SII model is similar to SIR model except nodes at the susceptible state can directly transit to the immunized state.
Results Exhibition of the Modelling via Simulation

The traditional epidemic models have three categories: SI, SIS, SIR.

Comparison Result: Our modelling result is more close to the simulations. Our susceptible-infectious-immunized (SII) model can precisely present the propagation / dynamics of social network worms.
Modelling the Propagation of Rumours and Truths in Online Social Networks

• Jiaojiao Jiang, Sheng Wen, Shui Yu, Yang Xiang, Wanlei Zhou, and Ekram Hossain, "Identifying Propagation Sources in Networks: State-of-the-Art and Comparative Studies", Accepted by IEEE Communications Surveys and Tutorials, accepted 17/9/2014.
How Rumours and Truths Spread in OSNs

Case 1 (23/04/13): Market chaos after fake Obama explosion tweet

• NEGATIVE INFORMATION

Hackers took control of the Associated Press Twitter account overnight and sent a false tweet about two explosions at the White House that briefly sent US financial markets reeling.

Negative Results

Reuters data showed the tweet briefly wiped out $US136.5 billion of the S&P 500 index’s value before markets recovered.

• POSITIVE INFORMATION

The White House quickly issued a statement saying the report of explosions was not correct.

Technical Perspective (optimistic choices)

The probabilities of people believing positive information \(a\) and negative information \(b\), we have \(0<a<1, b=0\). We let \(a+b<1\) since they can contradict both kinds of information like “there was an explosion in White House but Obama was not injured”.

Ops! @ap get owned by Syrian Electronic Army! #SEA #Syria #ByeByeObama twitter.com/Official_SEA6/...
— SyrianElectronicArmy (Official_SEA6) April 23, 2013
How Rumours and Truths Spread in OSNs

Case 2 (11/01/11): Coup in Tunisia - the fall of president Ben Ali

Negative Information
A rumor from tweeters went round that the army has seized power and ousted the Tunisia president.

Positive Information
The coup story was later suggested to be untrue by Egyptian Chronicles etc.

Technical Perspective (preferable choices or Minority being subordinate to majority)

The probabilities of people believing positive information (a) and negative information (b), we have $0 < b < a < 1$, $a + b < 1$. On the contrary, if people prefer negative information, we have $0 < a < b < 1$, $a + b < 1$. People can contradict both positive and negative information.
How Rumours and Truths Spread in OSNs

Case 3 (19/06/13): R.I.P. Jackie Chan Dead

• NEGATIVE INFORMATION
The action star Jackie Chan was reported to be dead in Facebook sending thousands of his devout fans into shock.

R.I.P JACKIE CHAN 1954 - 2013 after perfecting a deadly stunt.
Watch the original movie here: http://apps.facebook.com/yahoonews_wr/

R.I.P JACKIE CHAN 1954 - 2013 [Hollywood Breaking News]
Watch this Exclusive Video
- Scenes not suitable for young audiences - (18 years and above) -

Share • 10 minutes ago via Yahoo News!

Technical Perspective (alternative choices)
People making alternative choices is people answering “yes-or-no” questions. People must take one side. They cannot say Jackie Chan is neither dead nor alive. If people believe Jackie Chan has died with probability (a), there must be a probability (b) that people believe he is still alive and we have 0< a, b<1, a+ b=1. People cannot refute both of the information.

• POSITIVE INFORMATION
Jackie Chan posted to Facebook a photo of himself with a newspaper.

Negative Results
Shefali Kanojia • 15 hours ago
God bless u jackie always u r a real star my entire family adores you. You are the real hero in all aspects. Many many years to come by and touching everyones hearts.
Modelling the Spread of Rumours and Truths

1. Modelling nodes, topology and social events
2. SXX and SXR
3. Modelling propagation dynamics

\[
P(X_i(t) = \text{Sus.}) = \left[1 - v(i, t) - r(i, t)\right] \cdot P(X_i(t-1) = \text{Sus.})
\]
\[
P(X_i(t) = \text{Rec.}) = 1 - P(X_i(t) = \text{Sus.}) - P(X_i(t) = \text{Inf.})
\]
\[
P(X_i(t) = \text{Inf.}) = v(i, t) \cdot P(X_i(t-1) = \text{Sus.}) + [1 - r(t)] \cdot P(X_i(t-1) = \text{Inf.}) + w(i, t) \cdot P(X_i(t-1) = \text{Rec.})
\]

\[
\begin{align*}
S(t) &= m - I(t) - R(t) \\
I(t) &= \sum_{i=1}^{m} P(X_i(t) = \text{Inf.}) \\
R(t) &= \sum_{i=1}^{m} P(X_i(t) = \text{Rec.})
\end{align*}
\]

\[
X_i(t) = \begin{cases}
\text{Sus.}, & \text{susceptible} \\
\text{Rec.}, & \text{recovered} \\
\text{Act.}, & \text{active} \\
\text{Imm.}, & \text{immunized} \\
\text{Inf.}, & \text{infected} \\
\text{Mis.}, & \text{misled} \\
\text{Con.}, & \text{contagious} \\
\text{Dor.}, & \text{dormant}
\end{cases}
\]

\[
\eta_{ij} \in [0, 1]
\]

Susceptible-X-X

Susceptible-X-Recovered
Correctness Validation

Basic Properties of the Network Topologies

<table>
<thead>
<tr>
<th></th>
<th>Facebook</th>
<th>Google Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>45814</td>
<td>264004</td>
</tr>
<tr>
<td>Number of links</td>
<td>4693129</td>
<td>47130325</td>
</tr>
<tr>
<td>Average degree</td>
<td>5.76</td>
<td>10.04</td>
</tr>
<tr>
<td>Max outdegree</td>
<td>199</td>
<td>5739</td>
</tr>
<tr>
<td>Max indegree</td>
<td>157</td>
<td>3063</td>
</tr>
</tbody>
</table>

Fig1. Optimistic choices (FB)
Fig2. Optimistic choices (G+)
Fig3. Preferable choices (FB & G+)
Fig4. Alternative choices (FB & G+)
Results Exhibition of the Modelling

• Optimistic and Pessimistic

We find that the propagation is mainly decided by the early spreading dynamics if people make optimistic or pessimistic choices on their receiving.
Results Exhibition of the Modelling

- Impact of the start time of positive information

Firstly, the propagation under different settings will finally become steady even though there are oscillations. The final results will be approximately equal to a constant. Secondly, we can observe that the spread of negative information reaches the largest scale at the early time stage.
Defense Measures in Online Social Networks

Take the methods of restraining rumors as an example.

Illustration of Various Proactive Measures

A. Degree

B. Betweenness

C. Core

- Infected node
- Rumour spreader
- Susceptible node
- Immunized node
- Rumour spreading route

D. Overlapped

E. Separated
Important Users in OSNs

Facebook Topology
Just an example.
Why is the Truth Spread Necessary?

Case 1: The place of birth of Obama

Case 2: Free press and human right

Case 3: Uncontrollable deceptive reporter

The question is whether truth propaganda can outperform traditional controlling techniques?
Maximal Infected Users and Final Infected Users

Maximal infected users: stay almost constant when using truth clarification.
Final infected users: decrease gradually when people are more likely to believe truths.
The Equivalence between Blocking Rumors and Spreading Truth

Fig. 19. The final number of infected nodes (I_{final}) when we set a series of different defense ratios (λ) and truth spreading probabilities $E(\eta_{ij}^{truth})$. Setting: $t_{infect} = 3$, $E(\eta_{ij}^{R}) = 0.75$.
Put Eggs in Different Baskets

A Case Study: Both the maximal infected users and the final infected users decrease.

The exact equivalence: Two methods working together.

Fig. 20. The numeric equivalence between the degree measure and the remedial measure when we set a series of different defense ratios (λ) and truth spreading probabilities $E(\eta_{ij}^T)$. Setting: $t_{inject} = 3$, $E(\eta_{ij}^R) = 0.75$.
Outline

- Introduction
- Source Identification Methods
- Comparative Studies
- Our Work in Modelling the Propagation of Worms and Rumours
- Future Work & Discussion
Future Work & Discussion

• **Research problems:**
 • Analyze the *factors* that may affect the process of identifying propagation sources.
 • Factors like types of network topologies, propagation schemes, propagation models, etc.
 • Identifying Propagation Sources in *Mobile* Networks.
 • Identifying *Multiple* Propagation Sources.
 • Identifying Propagation Sources in *interconnected* Networks.
Acknowledgement

The research is partially supported by the following ARC grants:

• ARC Discovery Project DP0773264: 2007-2009, Wanlei Zhou and Yang Xiang, "Development of methods to address internet crime".

• ARC Linkage Project LP100100208, 2010-2012, Wanlei Zhou and Yang Xiang, "An active approach to detect and defend against peer-to-peer botnets".

• ARC Discovery Project DP1095498, 2010-2012, Yang Xiang, Wanlei Zhou, and Yong Xiang, "Tracing real Internet attackers through information correlation".

• ARC Linkage Project LP120200266, 2012-2015, Yang Xiang, Wanlei Zhou, Vijay Varadharajan, and Jonathan Oliver, "Developing an active defence system to identify malicious domains and websites".

• ARC Discovery Project DP140103649, 2014-2016, Wanlei Zhou and Yang Xiang, "Modelling and defence against malware propagation".
Thank you!